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In computer manipulation of macromolecules bond lengths and bond angles as well as some dihedral 
angles frequently are held fixed at ideal values observed in small model compounds. Changes of the 
conformation are then made by internal rotation about chemical bonds. The result of each rotation 
is the relative motion of large parts of the molecule; this will therefore be referred to as the global method 
of changing the conformation. The effect of this method is similar to manipulation of a stick model 
of the molecule. A method is described for manipulating the conformation in which only one atom is 
moved at a time; hence the name, local method. Each movement is made in order to improve the 
immediate environment of the atom by decreasing the differences between bond lengths, bond angles 
and fixed dihedral angles near this atom and their ideal values. Small displacements are calculated 
and applied for each atom in turn, and this is repeated a number of times for the entire molecule. 
At the same time, one may require that the position of each atom is not moved too far away from 
the starting position, so as to give idealization of the starting conformation or model building. Alter- 
natively, inclusion of a term tending to lower the contributions to the intramolecular energy (van der 
Waals attractive energy, repulsive energy, electrostatic energy) gives energy minimization. A descrip- 
tion is given of the progress of the model-building calculation with a fifteen-residue segment of the 
protein rubredoxin as a test case. The resulting conformation is found to be very close to the best 
global fit obtainable. This best global fit is obtained by constructing a global fit to the locally fit model 
and further adjusting this intermediate conformation to improve the agreement with the starting co- 
ordinates. A global fit constructed to the original data is found to be inferior. It corresponds to a 
higher relative minimum of the sum of the squares of the distances between the model coordinates 
and those to be fitted; the conformation of two side chains is qualitatively different in the two global 
fits. An example shows how the method is suitable for building trial conformations of chain segments. 
Finally, advantages of the local method are pointed out which, it is believed, make its use preferable 
for model building in an interactive computing environment. 

Introduction 

Purposes of conformational manipulation 
Computer  building of molecular  models and subse- 
quent manipula t ion  of  the models according to a pre- 
established criterion is needed in at least two areas: 
(a) crystallographic structure determinat ion and re- 
finement of  large molecules and (b) theoretical studies 
of macromolecular  conformation.  The criterion used 
in the former is the agreement with the observed X-ray 
diffraction pattern, while in the latter the criterion most 
often used is the conformational  energy. In both cases 
the common practice is to limit the allowed variations 
of  the structure by imposing restraints such as bond 
lengths, bond angles and some dihedral angles which 
are not permitted to vary from a set of  ideal or 
canonical  values. This is a consequence of the need for 
a low conformational  energy: the energy varies ex- 
tremely rapidly as a function of the bond angles and 
bond lengths, but, in general, varying the dihedral angles 
has a much  less dramatic  effect on the energy unless 
the rotations happen to cause severe atomic overlap. 

The determinat ion of the structure of a protein 
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starts with the fitting of an idealized model  to the elec- 
tron density map. Constrained refinement, in which 
this idealized model is changed by internal rotation to 
improve the fit to the electron density map, has been 
done successfully by D i a m o n d  (1971). More recently, 
it has been shown that further improvement  of the 
structure also requires repeated recalculation of  the 
map (Watenpaugh, Sieker, Herriott  & Jensen, 1971, 
1973; Deisenhofer & Steigemann, 1974). Usually, 
refinement is done by applying small shifts to the 
atoms of an ideal structure in order to improve the 
map (or reduce the ampli tude of  a difference map), 
then successively calculating a new idealized structure, 
and a new difference map, and repeating the procedure. 
Apparently,  this approach strikes an acceptable balance 
between computat ional  effort and progress towards a 
refined structure. 

A least-squares refinement, with as criterion the 
agreement between calculated and observed intensities 
of the X-ray reflections, but without imposed confor- 
mat ional  constraints, has been done for one protein 
(Watenpaugh et al., 1971, 1973). This method requires 
much effort, and may well not converge to a reasonable 
conformat ion with less extensive and precise experi- 
mental  data. 

It has recently been shown that the refinement of  the 
crystallographically determined conformation of a pro- 
tein may be aided by a consideration of the conforma- 
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tional energy (Birktoft & Blow, 1972; Levitt & Lifson, 
1969; Warme & Scheraga, 1974; Levitt, 1974). In 
addition, the conformational energy is a valuabi~e 
criterion in the analysis of folding of biopolymers, 
which for small peptides and regular, helical polymers, 
has become useful in the prediction of their structure. 

Thus, three different procedures are in use in which 
idealized conformations of the protein are improved. 
These procedures have a very similar overall approach 
but a different criterion which determines when there 
is improvement and when there is not. These criteria 
are: (1) the agreement between the calculated atomic 
positions and those positions which are provided on 
another basis, the experimental or target coordinates, 
(2) the agreement between the electron density map 
calculated for the ideal structure and the experimental 
electron density map and (3) the total energy of the 
molecule. In addition to these three, another possible 
criterion function would be the sum of the squares of 
the difference between observed and calculated intensi- 
ties of X-ray reflections, a reciprocal-space refinement. 
As yet, no one to our knowledge has attempted such a 
calculation on a molecule the size of a protein. 

Conformations of protein molecules are known to a 
rather low precision. Refinement is absolutely essential 
if one is ever to find adequate detailed answers to the 
question of how proteins function, as enzymes or 
otherwise (Watenpaugh et al., 1971; Watson et al., 
1963; Branden, Holmes & Kendrew, 1963). 

The global method of structure improvement 
A number of similar methods and results of con- 

formational refinements have been presented by several 
authors (Gibson & Scheraga, 1967, 1969; Diamond, 
1966, 1971; Warme, Go & Scheraga, 1972). In these 
methods, the conformation is modified by simul- 
taneously changing a certain specified number of di- 
hedral angles. The amount of change applied to each 
dihedral angle depends on the magnitude of the deriva- 
tives of the criterion function with respect to the 
dihedral angles. In some methods only the first deriva- 
tives need to be calculated, in others both first and 
second derivatives are used. 

When a small rotation is applied about a bond in the 
middle of the molecule, sizable changes may occur in 
the relative position of the two halves of the molecule 
separated by the bond. For this reason, we call this 
manner of changing the conformation the global 
method of refinement. This type of refinement proceeds 
best if the conformations of at least ten to fifteen res- 
idues of the molecule are varied simultaneously. This 
implies that some forty dihedral angles must be con- 
sidered as variables. On the one hand, this complicates 
the mathematical treatment; on the other hand, the 
simultaneous variation of a number of variables may 
give rapid convergence and is especially powerful 
whenever atomic positions can only be improved by 
concerted internal rotations about bonds which are 
several atoms removed. 

The local method of structure refinement 
Because of the increasing use of refinement pro- 

grams, it seemed to us worthwhile to investigate the 
performance of a different technique of refinement. 
This technique is based on the rather simple principle 
that if the environment of every atom is ideal, that is to 
say if all the bonds leading to every atom have the 
correct ideal bond lengths and all the angles which 
these bonds make with other bonds have their ideal 
values, then, of course, the structure as a whole is an 
ideal structure. Most atoms of an imperfect structure 
can individually be moved a little bit in such a way that 
the difference between bond angles and bond lengths 
and their ideal values will decrease. Only atoms bonded 
to one other atom can be moved to a position where 
bond angles and bond lengths are exactly correct. 
However, by repeatedly applying this process to all the 
atoms in turn, it is possible to make the entire structure 
approach more and more an ideal structure. This 
article describes a model-building program written 
using this principle and the results obtained with this 
program. 

Restating the principle of the calculation in alge- 
braic terms, one defines a criterion function, F °, for 
each atom as follows: 

F°=w, ~, (l-lo)2+wt ~ (O-Oo)Z+wr ~ (e-Co) z (1) 

where the three summations are carried out for all the 
bond lengths, l, all the bond angles, O, and all the 
constrained dihedral angles, Q, which are affected by 
the position of the atom i. The parameters w~, w, and 
wr represent the weights which are to be given to the 
errors in bond lengths, bond angles and dihedral 
angles respectively. Shifts of the atomic position are 
applied on the basis of the first and second derivatives 
of the criterion function with respect to the coordinates 
X~, following the Newton-Raphson method, i.e. 

F " / I X =  - F '  (2) 

where F'(F") represents the vector (matrix) of first 
(second) derivatives of F with respect to the com- 
ponents of X, a n d / I X  the shift vector.* 

* Our choice of minimization method is somewhat arbi- 
trary. Convergence is slower than one might wish it to be. 
When several atoms should move to relieve an error, this has 
to be done in many small steps, since placing any one atom 
(right away) in its ultimate position grossly deforms the struc- 
ture. An advantage is that the programming is relatively 
simple. Furthermore, storage requirements and execution time 
vary linearly with the size of the molecule. Without elaborate 
tests, we cannot exclude the possibility that some other minimi- 
zation is more efficient. Several powerful minimization methods 
consider many variables at a time and work with an array of 
second derivatives. With the Cartesian coordinates as variables, 
the second derivative matrix has many vanishing elements. 
With the use of specialized representations and routines for 
handling such sparse matrices a 'block' minimization still 
using the Newton-Raphson method might be rather efficient. 
However, it is not a trivial undertaking to put this idea into 
practice, and this may properly be the subject of a separate 
study. 
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It is essential that the function which is used not be 
F ° as defined in equation (1). Rather, we add another 
term to F ° which depends on how far the atom has 
moved from its original position. Thus we use 

F, = F ° + w0(X- X0) z (3) 

where X0 represents the coordinates which the atom 
had at the start of the calculation, and w0 a weight 
determining the importance of the additional term. 
The shift AX is calculated for and applied to each atom 
in turn. This process is applied, atom by atom, for as 
many cycles through the molecule as are required for 
convergence. The calculation begins with a fairly 
large value for w0 as compared to the values of wz, w~ 
and wr, but after each cycle the weight w0 is reduced 
with respect to the other three weights. 

The procedure becomes an energy minimization if 
one adds to the function F ° a term equal to the sum of 
the energy of interaction between this atom and all 
atoms to which it is not directly bonded: 

F~ = F ° + ~ E u . (4) 
d 

Here each term E u consists of at least three contribu- 
tions: the van der Waals attractive energy, the repul- 
sive energy and the electrostatic energy. In that case, 
the weights occurring in equation (1) may be given such 
values that the terms represent the energy of deforma- 
tion of bond lengths, bond angles and dihedral angles 
in the same units in which the energies E u are cal- 
culated. Such a calculation applies the idea of a 'con- 
sistent force field', i.e. of zero net force on each atom. 
With this idea, Lifson & Warshel (1968) determined a 
set of interatomic force constants from spectroscopic 
and crystal data. Levitt's recent energy refinement of 
the conformation of lysozyme uses essentially the 
procedure outlined above (Levitt, 1974). 

Calculations 

Using the program which we have written, we have 
made a series of calculations on a segment of rubre- 
doxin in order to find optimum conditions for the 
model-building procedure. We have also compared the 
results obtained under the conditions which appeared 
to us most favorable with results of a model-building 
program using the global method. 

Methods 
Our global refinement procedure is similar to that 

described by Warme, Go & Scheraga (1972) and uses 
Fletcher-Powell-Davidon minimization, as there 
described. The initial values of the dihedral angles of 
the idealized model are those calculated from the given 
set of coordinates. In the first step of the refinement, 
the conformation of a piece consisting of the first four 
residues is allowed to vary until the agreement be- 
tween calculated and target coordinates for this piece 
is satisfactory. Next, the conformation of residues 

three through six is changed in the same manner. In 
this way the conformation varies four residues at a time 
until the four-residue piece reaches the end of the 
molecule. Following this, the conformation of the 
entire piece of fifteen residues is allowed to vary, both 
by applying internal rotation and by repositioning and 
reorienting the molecule. 

In both the local and the global procedures the atoms 
are listed starting with the N of the first residue (the 
formyl group present on the N-terminal methionine 
residue was not considered) in such a way that shorter 
branches are always listed before longer branches 
(Hermans & Ferro, 1971). 

In the global procedure bond lengths and bond 
angles do not vary while internal rotation is allowed 
about most chemical bonds. The peptide bond is kept 
in the planar trans conformation and the geometry of 
ring structures including that in proline is not allowed 
to vary. In the local method we represent the same 
constraints by including a minimum but sufficient set 
of error terms in the criterion function [equation (1)]. 
This set can be chosen in more than one way. Our set 
was obtained by having each atom added to the list 
(except the first three) define one additional bond 
length, one bond angle and one dihedral angle. When 
the structure branches, one of the atoms after the 
branchpoint defines the dihedral angle for rotation 
about the bond leading to the branchpoint; this angle 
is constrained only in the peptide bond and in rings. 
Each other atom connected to the branchpoint de- 
fines one fixed dihedral angle indicating by how much 
the lateral branch is rotated out of the plane of the 
preceding bond and the main branch. On the basis of 
these restrictions the error terms in equation (1) are 
accumulated. (It may be useful to point out that this 
minimal set is imperfect when the method is used for 
energy refinement.) 

In the local-refinement method the shift of each atom 
is calculated and applied in the order in which it is 
listed. We prevent both excessive shifts and shifts in 
the wrong direction. The latter occur when the deter- 
minant of the second-derivatives matrix [of. equation 
(2)] is negative. In the former case, a smaller shift of 
the coordinates of the atom is applied, which has 
components proportional to the components of the 
calculated shift. In the latter case, a shift is applied of 
which the components are proportional to the first 
derivatives of the function Fi, but of opposite sign. 
The maximum permissible shift and the shifts which 
are applied in either of the two cases have the same 
value, 5, obtained according to the following (arbitrary) 
algorithm: 

5=5on/(n + k z) (5) 

where 50 has a value of 0.2 A, n is the total number of 
cycles through the entire molecule which are going to 
be performed and k is the number of the cycle which is 
at this time being executed. 

The calculations were all carried out using as a test 
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case the first fifteen residues of rubredoxin for a total 
of 122 atoms; a set of coordinates was kindly provided 
by Professor L. H. Jensen. These coordinates were 
obtained by Watenpaugh et al. (1973) with several 
cycles of difference Fourier refinement in which the 
constraints on the conformation were approximately 
maintained; this was followed by several cycles of least- 
squares reciprocal-space refinement. Since no con- 
straints were imposed on the coordinates in the final 
stages of their refinement, the resulting coordinates are 
not particularly close to those of an idealized structure. 
Nevertheless, these coordinates clearly fit the steric 
requirements of the chemical structure of rubredoxin. 

One side chain (isoleucine 12) was assumed to be a 
valine residue in the refinement of Watenpaugh et al. 
We gave the Ce atom rather bad coordinates by mis- 
take. As will be discussed, the refinement near this 'bad 
spot' helps in our analysis of the performance of the 
refinement methods. Most of the residues are in the 
extended, or fl conformation, a few have a conforma- 
tion which may be called a-helical, and one glycine 
residue has a conformation which falls in a third area 
of the Ramachandran plot (Fig. 1). Thus, the set of 
test data appears to be quite representative of data to 
which one usually would apply a model-building pro- 
cedure. As an additional test, we applied the program 
to a 'preshrunk' set of coordinates obtained from these 
coordinates of rubredoxin by multiplying the x and y 
coordinates by a factor of 0.8, leaving the z coordinates 
as they were before. 

In none of our calculations did we take into account 
that the two sulfur atoms of our 15-residue molecule 
are part of the FeS4 cluster of rubredoxin, which has a 
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Fig. 1. Representat ion of  the conformat ion  of  residues 2 
th rough 14 in a Ramachandran  plot. g and g are the 
dihedral angles for the bonds N - C ,  and C~-C, respectively. 
Hexagons represent the conformat ion  of the original co- 
ordinates, circles represent the conformat ion  resulting after 
100 cycles of local refinement. The residues represented by 
the cluster in the upper  left quadrant ,  are in the more  or 
less extended, or fl conformat ion.  Those in the lower left 
quadrant  are in another  allowed region of the map,  and 
have conformat ion  roughly that of a residue in an ~ helix. 
Residue l0 is glycine. 

specific geometry; this imposes further constraints on 
the model. Both methods of refinement can take these 
additional constraints into account. The problems 
arising from the need to provide for ring closure are 
briefly discussed near the end of this article. 

Test of  the refinement method 
In determining the shifts to be applied to each atom, 

different weights are given to the displacements from 
the original position and to the errors in bond lengths, 
bond angles and fixed dihedrals [equations (1)-(3)]. 
We said above that these weights vary throughout the 
refinement. We have performed some calculations in 
order to establish that this is in fact the preferable way 
of doing the calculation and what are desirable values 
for the weights throughout the calculation. The 
following arguments can be proposed in order to make 
a selection from the great many possible choices. 

In case the calculation performed is an energy mini- 
mization, the weights for deforming bond lengths, 
bond angles and fixed dihedrals ought to be such that 
the terms in equation (1) correspond to energies of 
deformation of these parameters. The three weights 
would then be very roughly in the ratio 300 to 30 to 15 
and this set of weights was in fact used for some of our 
calculations. However, the calculations which we are 
here concerned with are model-building calculations. 
The structure of a model is not fully determined by the 
constraints (in contrast to what is true when one is 
doing an energy calculation), since the number of con- 
straints is smaller than the number of independent 
variables, which is equal to three times the number of 
atoms. 

Thus there appears to be no obstacle to approaching 
an ideal structure as closely as one wishes, and the 
choice of the ratios between the three weights should 
theoretically not affect the final result; however, during 
the approach to an ideal structure those parameters 
which have been given the smallest relative weight will 
deviate most strongly from their ideal values. 

On the other hand, one may argue that one has no 
control over the conformation unless sufficient con- 
straints are imposed to determine the final structure. 
The conformation which we obtain at the end of the 
calculation should not only be ideal, but also as close 
as possible to the starting conformation. Therefore, the 
presence of the term added in equation (3), which takes 
into account the distance the atom has moved from its 
original position, would seem to be essential, serving 
to keep the calculated structure near the original 
structure. However, if the displacement from the 
starting position is given a finite weight in the criterion 
function F~, then the final structure obtained will not 
be perfectly ideal but somewhat deformed because of 
the 'pull' by the original coordinates. The resolution 
of this dilemma would appear to be to let the weight 
for the approach to the original positions be significant 
in the early cycles, and gradually become very small 
with respect to the other weights. Then, when the 

A C 30A - 4  
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weighted term for the displacement has become 
negligible, the structure will already be very close to an 
ideal conformation. From then on, further changes in 
atomic positions will be very small and gradual. 

In Fig. 2 we show graphically the progress, through 
a number of cycles, of the sums of the squares of the 
distances moved, of the squares of the errors in bond 
lengths, bond angles and dihedral angles. Also given 
are weights and values after twenty (in one case also 
six) cycles. In the calculations reported in Fig. 2 the 
weights were set for the first cycle and left unchanged. 
In another set of calculations, the weights were all set 
equal to one in the first cycle and allowed to exponenti- 
ally reach the values shown after twenty cycles. Values 
after twenty cycles (for one case after ten cycles) are 
listed in Table 1. In Fig. 2 and Table 1, the order for 
both weights and total deviations is: displacements, 
bond lengths, bond angles and dihedral angles. 

One notes that when the weight given to the displace- 
ment from the original position is relatively large, the 
structure stabilizes in a few cycles after some initial, 
quite rapid changes. On the other hand, when the 
weight for the displacement is small the conformation 
continues to change gradually after the first initial 
rapid changes have occurred. 

The use of a weight for the error in bond lengths 
which is much larger than that for the error in bond 
angles or dihedral angles as in Fig. 2(d) and Table 1, 
set 5, produces a structure with excellent bond lengths. 
Nevertheless it cannot be considered overall to be as 
close to an ideal structure as the conformations ob- 
tained with weights in a less extreme ratio. 

Comparison of Fig. 2(d) and Table 1, set 5, shows 
that the use of exponentially changing weights may 
produce in twenty cycles a structure which is closer to 
ideal and also is closer to the original data than that 
obtained using constant weights. With the changing 
set of weights, the calculation is more effective and also 
more efficient. With another set of weights [Fig. 2(c) 
and Table 1, set 4] the calculation with changing 
weights is the less efficient of the two. However, six 
cycles of refinement using constant weights move the 
structure as far as do twenty cycles with changing 
weights, while the error in the former result is consider- 
ably larger. 

Structures in which the deviations from the ideal are 
distributed equally over the bond lengths, bond angles 
and dihedral angles are obtained if the weights for the 
errors in these parameters are approximately equal. 
The choice of the ratio between these weights as one to 
two to two was made in the expectation that the 
maximum error in any given bond length (in .A) or 
bond angle or dihedral angle (in rad) in the entire 
molecule would then be approximately the same. 

As expected, the use of a progressively smaller weight 
for the displacement from the original position im- 
proves the agreement with an ideal structure and 
causes a greater total displacement from the original 
structure. Notice, however, that after ten cycles the run 
reported in Table 1, set 1 has produced the same total 
movement from the starting structure but less progress 
has been made to an ideal structure compared with 
twenty cycles (Table 1, set 3) in which the final weight 
for the deviation from the starting positions is higher 
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Fig. 2. Progress of the refinement during the first six cycles 
using various sets of weights which are held constant  for 
all cycles. Plotted are" the sums of the squares of the total 
distance moved (solid line), of the errors in bond lengths (o), 
in bond angles (o) and in dihedral angles ( x ). The weights 
given to these terms and the values attained after twenty 
cycles (in one case also at the end of six cycles) are given 
in tables in each part of the figure, in the order" displace- 
ment, error in bond length, bond angles and dihedral an- 
gles. Units are .&2 and rad 2. 

Table 1. Result of twenty cycles of local refinement of the test structure 

Weights start all equal to one and change exponentially with the number  of cycles to the values shown (in columns marked w). 
The sums of  the displacements, and of errors are given in the columns marked E~0. Values are in/~2 or in rad' .  Co lumn marked 

El0 gives values after 10 cycles. Values in parentheses are root-mean-square values, with angles given in degrees. 

E,o E~o E~o E2o E2o E~o 
w (r.m.s.) (r.m.s.) w (r.m.s.) w (r.m.s.) w (r.m.s.) w (r.m.s.) 

Displacement 1 15" 8 20"4 1 14-1 1 15"7 1 13"3 1 13" 3 
(0-36) (0"41) (0"34) (0"36) (0.33) (0"33) 

Bond lengths 107 0"19 0"08 25 0"21 70 0"15 60 0-037 300 0"003 
(0"039) (0"026) (0"041) (0.035) (0"017) (0"005) 

Bond angles 2.107 0.45 0.18 50 0.34 140 0.28 30 0.42 30 0.60 
(3"5) (2.2) (3"0) (2-7) (3-4) (4-0) 

Dihedral angles 2. 107 0.21 0.08 50 0.18 140 0.13 15 0.72 15 0.96 
(2.4) (1.5) (2.2) (1-9) (4.4) (5.3) 
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relative to the other weights. One concludes that the 
weight for the displacement from the original positions 
has in the run of Table 1, set 1 too rapidly become 
insignificant with respect to the other weights. 

The results of twenty cycles of refinement using 
various sets of weights on the structure with two of the 
three Cartesian coordinates foreshortened by 20 % are 
given in Table 2 (the weights change gradually in the 
same manner as they do in the runs reported in Table 
1). We see that the same amount of computation on the 
shrunken molecule produces in each case a structure 
which has moved farther from the original position 
and in which, at the same time, the errors in bond 
lengths, bond angles and dihedral angles are larger 
than on the non-shrunken molecule. The increase in 
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Fig. 3. Progress of the sum of the squares of the displacements 
from the original positions through a 100-cycle refinement 
in which the weights varied exponentially with the number 
of cycles performed. 
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Fig. 4. Progress of  the sums of  the squares of  the errors in 
bond lengths (o), bond angles (o )  and dihedral angles ( x ), 
for the same run as the data in Fig. 3. Values are in /~z or 
rad 2. 

the error is found to be greatest in the bond lengths, 
given the same set of weights. 

The runs reported above allow us to select a set of 
weights and a method for changing them which will 
produce a reasonably rapidly improving structure 
which at the same time remains as close as possible to 
the original starting structure• In the following section 
we further analyze the progress of such an optimum 
run and compare the resulting structure with the model 
fitted to the same data by the global refinement method. 

Progress of the refinement and analysis of the results 
To illustrate the progress of the refinement we show 

in Fig. 3 the values of the sum of the displacements 
from the original coordinates as a function of the 
number of cycles on a linear scale. In Fig. 4 we show 
on a logarithmic scale the sums of the squares of the 
errors in bond lengths, bond angles and dihedral angles. 
In this calculation the weights for the four contribu- 
tions to F~ all start equal to one another and the weights 
change exponentially to final values of 1, 10 7, 2 x 10 v 
and 2 x 10v. * 

The curve drawn through the points giving the total 
displacement (Fig. 3) is an exponential curve approach- 
ing the limit of 27.2 A z for a very large number of 
cycles. All the points are very close to this curve over 
the last 75 cycles of the refinement. During these 75 
cycles the sum of the distances moved comes closer to 
this limit by a factor of ten. Between the third and the 
24th cycle the function increases less rapidly than the 
exponential, presumably because at this stage of the 
refinement the weight given to the distance moved is 
not yet insignificant with respect to the other weights. 
In the first two cycles the function changes more 
rapidly than the exponential. In this case all weights 
are nearly equal to the weight for maintaining the 
structure close to the original structure and a certain 
amount of 'slack' is at once taken up. 

We now compare the structure resulting from the 
global refinement calculation with that obtained by the 
local refinement method. Ideally the two would be 
identical. However we find that the difference tends to a 
finite limit. Further analysis shows that at least part 
of the remaining difference is due to the fact that the 
two structures correspond to different best fits. There 
are many ways of building a model which has ideal 
bond lengths, bond angles and dihedrals and which is 

* This calculation took 50 s of c.p.u, time on an IBM 370 
model 165 for a total of 12200 atom cycles. 

Table 2. Results of twenty cycles of refinement on the foreshortened conformation 

Cf. legend of Table 1. 
w E20 (r.m.s.) w E20 (r.m.s.) w E20 (r.m.s.) 

Displacement 1 19.0 (0"39) 1 2 3 . 0  (0.43) 1 24.8 (0.45) 
Bond lengths 25 1 "5 (0" 11) 70 1" 1 (0.095) 300 0.04 (0.018) 
Bond angles 50 0.50 (3.7) 140 0.40 (3.2) 30 2.7 (8.5) 
Dihedral angles 50 0" 14 (1.9) 140 0" 15 (2.0) 15 1 "5 (6.4~ 

A C 30A - 4* 
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also a best fit to a set of target coordinates. In this case 
one means by best fit that slight perturbations of the 
model are removed if the perturbed model is resub- 
mitted to the refinement process. In Fig. 5 we show four 
projections of three side-chains of the molecule: one 
of the starting structure and three of structures re- 
suiting from local and global refinement. For the side 
chain of isoleucine 12, which has a poor initial geom- 
etry, one notes how very close the results of the two 
fitting procedures are to one another and how far they 
are from the original positions. The two methods give 
practically the same result. Just as with isoleucine 12 
the initial geometry of the side-chains of lysines 2 and 
3 does not correspond well to an idealized geometry, 
especially near the ends of the chains. However, the 
two refinement methods produce what appear to be 
qualitatively different conformations for these side 
chains. 

In order to show that the result of the local refine- 
ment indeed corresponds to another possible solution 
of the global fitting problem, we used the global refine- 
ment method to calculate an idealized structure best 
fitting the result of the local refinement. Subsequently, 
this conformation was allowed to change further in 
order to attain the best possible global fit with the 
original set of coordinates. The resulting coordinates 
are close to the result of the local refinement procedure 
and not to the result of the first global refinement cal- 
culation. The sum of the squares of the distances be- 
tween calculated and target coordinates (the criterion 
function for the global model-building procedure) has 
apparently more than one minimum. Some of these 
minima differ sufficiently little in the corresponding 
values of the independent variables that different re- 
finement methods may end up near different minima. 

The sum of the squares of the deviations (Table 3) 
shows that a direct global fit to the target data is not as 
good a fit as a global fit to the target data using a global 
fit to locally refined data as an intermediate conforma- 
tion. The difference in the quality of the result is 
greatest where the conformations differ most. The sum 
of the squares of the displacement for the atoms of 
residue lysine 2 is 2.71 for the former structure, 2.23 for 
the latter, while for lysine 3 these numbers are 3.30 and 
2-90. These differences account for 0.9 out of a total 
of 1.5 /~z difference between the two structures (see 
Table 3, penultimate line). 

The values of the dihedral angles resulting from dif- 
ferent refinements are given in Table 3. The qualitative- 
ly different fit of the two lysine side chains is evident 
from these data. Apart from the difference in lysines 2 
and 3, the two variable dihedrals next to the peptide 
bond between residues 7 and 8 show the largest devia- 
tion. It may be that the local fit corresponds to another 
optimum global fit in this region. If this is the case, then 
the fact that the local-fitting method tends after many 
cycles to a structure which is less far removed from the 
starting structure than any of the structures obtained 
with the global refinement method indicates that this 

is a very good global fit, perhaps the best possible. 
Alternatively, it may be that somehow the local refine- 
ment method is incapable of removing the last small 
errors in bond lengths, bond angles and dihedral 
angles, even after a great many cycles of calculation. As 
yet, we have not encountered a case where this is clearly 
so. 

Small errors, particularly in bond angles and fixed 
dihedral angles, occur without doubt in the true con- 
formation of a folded protein molecule. These are, of 
course, not really errors but small deviations caused by 
intramolecular forces. Thus, a perfect model is not a 
significantly better representation of the true conforma- 

N ~  

. ! 
C,, I LE 12 

+ ,.~ 

,: ., " 

4-; 

LYS 2 LYS 3 
Fig. 5. Projections of the coordinates of the atoms of three 

side chains before and after refinement. Given are the posi- 
tions before refinement (®), after one hundred cycles of 
local refinement ( x ), after global refinement of the original 
structure (+), and a global fit to the starting structure, 
obtained with as an intermediate conformation, a global 
fit to the local fit (e). 
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residue number  

Fig. 6. Distribution of the errors throughout the main chain 
of the fifteen-residue molecule. The absolute values of the 
errors in the bond angle at C~_t, Nt and C~ were added 
and are given as a dashed line for the result after 40 cycles 
of refinement, and as a solid line for 100 cycles of refinement. 
The solid line with shading represents the error in the 
dihedral angle for the peptide group after 100 cycles. 
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Table  3. Dihedral angles for various fits 

Meaning of columns: 

TGT 
LC20 
LC40 
LC00 
GBL0 
GBL3 
GBIA 

TGT 

Original structure 
Local fit obtained in 20 cycles 
Local fit obtained in 40 cycles 
Local fit obtained in 100 cycles 
Global fit to original structure 
Global fit to structure LC00 
Global fit to LC00 refitted to original structure 

LC20 LCA0 LC00 GBL0 GBL3 GBIA 

Methionine 1 

ZI 9 
Z2 -- 125 
;(3 --21 

6 

Lysine 2 
~o - 9 7  
Zt - 18 
Z2 -- 73 
Z3 - 4  
Z4 22 

166 

Lysine 3 
¢ - 8 0  
Z~ -- 55 
Z2 162 
Zs 179 
;(4 - 163 
gt 152 

Tyrosine 4 
~0 - 126 
Zt - 110 
,~e 2 - -  61 
gt 168 

Threonine 5 
~0 -131 
X1 - 2  

127 

Cysteine 6 
- 8 3  

Zi 173 
q/ 124 

Threonine 7 
~o - 6 9  
Zt 104 

- 6  

Valine 8 
- 8 8  

Z1 - 60 
~' - 7 2  

Cysteine 9 
~0 - 102 
ZI 44 
~/ - 2 2  

Glycine 10 
~0 94 

16 

Tyrosine 11 
- 3 5  

ZI 158 
Z2 102 

136 

-81  - 8 8  - 8 5  -81  - 8 6  - 7 6  
- 7 6  --71 - 5 9  - 7 7  - 5 8  - 6 8  
- 8 2  -91  - 8 8  - 7 8  - 9 2  -81  

42 37 29 37 28 36 

- 1 0 1  - 9 8  - 9 7  - 8 3  - 8 8  -91  
- 2 0  - 1 7  - 1 9  - 1 9  - 2 7  - 3 4  

- 1 2 5  - 1 3 0  - 1 3 2  - 6 0  - 1 2 2  - 1 1 7  
84 81 88 --60 97 104 

- 6 3  - 5 9  - 60 92 - 7 1  - 7 7  
162 160 156 172 159 162 

- 8 2  - 7 8  - 7 3  - 9 0  - 8 0  -81  
- 5 5  - 51  - 5 5  - 6 5  - 5 6  - 7 5  
142 145 145 -151 150 144 
113 115 126 -135  114 134 

- 1 6 4  - 1 6 2  - 1 5 0  139 - 1 5 2  - 1 3 5  
150 145 138 134 138 132 

- 1 2 1  - 1 1 7  - 1 1 3  - 1 1 4  - 1 1 6  - 1 1 4  
- 7 8  - 8 0  - 8 0  - 7 7  - 7 8  - 7 8  

- 1 1 0  - 1 0 9  - 1 0 8  - 1 0 6  - 1 0 9  - 1 0 6  
149 145 139 124 130 124 

- 1 2 2  - 1 2 1  - - 1 1 7  - 1 0 3  - 1 0 6  - 1 0 3  
- 3 5  --33 - 2 9  - 3 2  - 2 6  - 3 2  
136 136 141 153 152 152 

- 76 - 7 7  - 84 - 9 6  - 9 7  - 9 6  
173 174 176 179 175 175 
107 103 95 92 93 92 

- 6 8  - 6 3  - 5 7  - 5 5  - 5 7  - 56 
68 68 68 75 78 76 

0 2 8 25 37 34 

- 9 7  - 1 0 2  - 1 0 6  - 1 1 8  - 1 3 1  - 1 2 8  
- 8 2  - 8 2  - 8 4  - 7 7  - 8 4  - 7 4  
- 4 8  - 4 8  - 5 2  - 6 6  - 65 - 63 

- 1 0 7  - 1 0 3  - 1 0 4  - 9 3  - 9 4  - 9 7  
75 76 70 65 68 64 

- 3 2  - 4 4  - 4 3  - 5 1  - 4 9  - 4 9  

108 120 125 131 128 126 
- 2  - 8  - 1 3  - 1 0  -11  - 3  

- 5 8  - 57 - 5 3  - 5 3  - 54 - 6 0  
162 164 166 166 166 166 
85 88 89 90 89 90 

131 127 123 120 121 119 

Tab le  3 (cont.) 

TGT LC20 LC40 LC00 GBL0 GBL3 GBIA 

Isoleucine 12 
--111 -113 --110 --105 --103 -104  --101 

Z1 180 135 139 136 130 136 132 
Z2 180 165 163 162 160 161 158 

178 129 127 129 129 130 129 

Tyrosine 13 
- 7 5  - 8 6  - 8 6  - 8 8  - 8 8  - 89 - 89 

Z~ 169 174 173 172 171 171 171 
Z2 86 79 79 79 79 79 79 

99 121 121 122 125 123 124 

Aspartic acid 14 
--95 --109 --108 --107 --109 --109 --108 

Z~ --177 --165 --165 -163 --161 --163 -159  
Z2 162 156 156 155 152 156 151 

116 115 115 114 113 114 114 

Prdine 15 
-11  - 3 5  - 2 7  -31  - 3 4  - 3 2  --33 

Sum of squares of deviations (A 2) 
0-0 20.4 24.4 26-0 33-7 33.8* 32.2 

Root-mean-square deviation (A) 
0"0 0"41 0-44 0"46 0.53 0"53* 0.51 

* These values with respect to the original structure, al- 
though structure GBL3 was obtained as a fit to structure 
LC00. The sum of squares of distances moved from coor- 
dinates of LC00 is 3-4/~? (0.17 .~ r.m.s.). 

t ion  t han  a m o d e l  in wh ich  b o n d  angles a n d  d ihedra l s  
devia te  f r om the i r  ideal  values by a few degrees.  H o w -  
ever, the  devia t ions  r e m a i n i n g  in mode l s  bui l t  us ing the 
loca l - re f inement  p r o c e d u r e  do no t  necessar i ly  bea r  any  
re la t ionsh ip  to the devia t ions  wh ich  occur  in the  
molecule .  

Af te r  m a n y  cycles of  local  r e f inement  the  dev ia t ions  
f rom an ideal  s t ruc ture  are all loca ted  in the ma in  cha in  
of  the  molecu le .  This  is no t  surpr is ing,  since the  ideal-  
iza t ion is s t r a igh t fo rward  for  any  a t o m  wh ich  is 
b o n d e d  to on ly  one  o the r  a t o m  and  the  s u r r o u n d i n g s  
of  the next  a t o m  in the  cha in  can  be m a d e  ideal  by dis- 
p lac ing  this a t o m  plus the  a t o m  at the end  of  the  chain .  
In  o rde r  to m a k e  the  s u r r o u n d i n g s  of  the  a t o m  in the 
midd l e  o f  the  cha in  ideal,  a fair ly large n u m b e r  o f  
a toms  all a long  the  cha in  will have  to m a k e  corre-  
spond ing  small  m o v e m e n t s .  S t ra in  occu r r ing  at  any  
one  a t o m  is thus  d i s t r ibu ted  over  the  cha in  as the  re- 
f inement  progresses  unt i l  it is e i ther  a b s o r b e d  by a free 
cha in  end  or  a b s o r b e d  by a d j u s t m e n t  of  one  or  m o r e  
free d ihedra l  angles.  This  takes  m o r e  cycles for  a toms  
fa r the r  f r o m  the  cha in  ends.  

In Fig.  6 we show h o w  the  er rors  in b o n d  angles a n d  
the  e r ro r  in the  f rozen  d ihedra l  angle  for  the  pep t ide  
b o n d  are  d i s t r ibu ted  over  the  molecu le ;  the  er rors  are  
c o n c e n t r a t e d  in the  midd l e  pa r t  o f  the  molecu le .  

Model building as an end in itself 
In  the  Introduction we descr ibed  h o w  idea l iza t ion  

or  m o d e l  bu i ld ing  can  be used to a id  one  in the  refine- 
m e n t  of  p ro te in  s t ruc ture .  The  use o f  m o d e l  c o n f o r m a -  
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tions is of course much wider than that. Model con- 
formations are used in the initial phase of interpretation 
of the electron density map and at the end of the 
structure determination in order to give a pleasing 
and understandable form to the result. Once the struc- 
ture is known, the three-dimensional model is of great 
importance in reaching an understanding of the 
biological function of the protein in terms of its 
structure and the design of new experiments to test 
any hypothesis made in this regard. Computed models 
are not useful in this respect unless they are converted 
into visual form, either on a computer-driven display 
or as a three-dimensional model built of solid parts 
according to the coordinates of the computed model. 
A general-purpose model-building program should be 
usable both as one of the several procedures used in 
refinement and for the purpose of producing a stereo- 
chemically reasonable model which can be visually 
inspected. 

A not unusual requirement in model building under 
the second set of circumstances is to connect two parts 
of the chain of known conformation with a series of 
residues in a region where the data are insufficient to 
determine the conformation. Accordingly, we have 
investigated the performance of the local fitting method 
in solving the following problem. Given the conforma- 
tion of two sections of nearly extended chain forming 
an antiparallel fl structure, it was asked to connect the 
chain continuously to form a sharp bend. Of a chain 
of ten alanine residues, we assigned to the first five the 
coordinates of five residues on one chain and to the 
other five the coordinates of five residues on the anti- 
parallel chain. Logically, residues 5 and 6 were con- 
nected but the bond angles and bond distance near the 
connection were patently ridiculous. After only twenty 
cycles of refinement the connection between residues 5 
and 6 had closed; shifts of up to 3 A had occurred in 
some of the atoms of residues 5 and 6, shifts of at most 
0.5 A in the atoms of residue 4 and shifts of less than 
0.1 A in the atoms of all the other residues. Since the 
weights used were in the ratio 1 to 60 to 30 to 15 and 
the largest shift was 3 A, it is not surprising that the 
error in bond angle was as large as 0.45 radians near 
the atoms where the shift was greatest. The errors in 
bond lengths and dihedral angles were smaller. This 
conformation would undoubtedly have progressed 
further to an idealized conformation if the weight for 
the displacement had been reduced with respect to the 
other weights. 

Alternatively, we could have produced a very similar 
result by excluding the term dependent on the displace- 
ment from the original position for those atoms which 
are found to move a great deal. Whenever a larger gap 
is to be bridged with a greater number of residues, and 
consequently with a larger number of degrees of free- 
dom, more than one qualitatively different conforma- 
tion may be possible. In this case the choice can be 
restricted by specifying the target positions of a few 
selected atoms in the gap. 

Projections of the starting conformation and the 
conformation resulting from the fitting calculation are 
shown in Fig. 7. A space-filling model of a bend similar 
to that occurring in the computed structure is easily 
built. The bend is a type II fl bend according to the 
nomenclature of Venkatachalam (1968). Refinement of 
the right-hand conformation of Fig. 7 by energy 
minimization results in further changes, but the con- 
formation remains qualitatively the same. The max- 
imum deviation in any bond angle after energy min- 
imization is 17 ° (0.29 rad). 

C o n c l u s i o n s  

The results reported above demonstrate that refinement 
via local changes can replace refinement obtained by 
internal rotation about covalent chemical bonds. We 
here review some considerations which may lead to a 
preference for either method depending on the purpose 
for which applied. 

Quality of final fit 
The result of a global refinement is always a per- 

fectly ideal structure. Since it is obtained by function 
minimization, it will rarely be exactly a structure which, 
when slightly perturbed, will return to itself upon 
further function minimization. However, the difference 
can be made small. This calculation will require about 
the same effort as one needed to obtain a locally re- 
fined structure. The latter, while not perfectly ideal, in 
compensation meets the requirement of being close to 
the original structure somewhat better. 

Much more important is that the local refinement 
apparently tends to the best distinct solution of the 
global-fitting problem, while the global method may 
easily give one a 'best' fit which is farther away from 

,3 

~3 
I 

Fig. 7. ORTEP plot of the conformation of a 10-residue poly- 
alanine molecule in the antiparallel ]7 conformation, where 
the chain is required to form as sharp a turn as possible. 
On the left, before refinement, one covalent bond is present 
which is several A long. On the right, the same conformation 
after only 20 cycles of local fitting. 
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the target coordinates. Use of both methods in succes- 
sion (first local, then global) is recommended for 
obtaining the best of several possible solutions to the 
global-fitting problem. 

Use with cyclic structures 
The presence of loops in the structure poses addi- 

tional constraints to be taken into account in the fitting. 
In the global calculation the closure, whether approx- 
imate or perfect, requires special features and steps 
(Gibson & Scheraga, 1967, 1969). But if, as in local 
refinement, only the immediate environment of each 
atom is considered, ring closure elsewhere is unnoticed 
and is yet achieved as the refinement progresses. 
Initial errors are distributed over the atoms of the ring 
and are eventually 'absorbed' by the free internal rota- 
tions. 

Simplicity 
Both conceptually and algebraically local refinement 

is a simpler method.* As a result, programming new 
problems in which the local change of conformation is 
an element of the calculation is, in our experience, 
much simpler than if one uses global changes instead. 
This simplicity is expected to be a great advantage in 
an interactive environment achieved using a computer- 
driven display, where the programmer may call for 
refinement of a conformation under a variety of cir- 
cumstances (Levinthal, 1966; Levinthal, Barry, Ward 
& Zwick, 1968; Katz & Levinthal, 1972; Meyer, 1971). 

In such a system, both coarse and accurate refine- 
ment of a starting set of coordinates will be requested. 
Clearly a result which is inaccurate by being not 
altogether ideal but relatively close to the starting coor- 
dinates is much preferable to a result which errs by 
being rather far from the given coordinates but al- 
together perfect in geometry. The relatively small size 
of the program module is a further, practical advantage 
in an interactive system. 

Use in energy minimizations 
In using the local-refinement method for the min- 

imization of energy the problem of the underdeter- 
mination of the final results by the constraints, dis- 
cussed above, disappears entirely. The starting coor- 
dinates do not influence the final result, except insofar 
as they determine which qualitatively different struc- 
ture out of the many with minimum energy is obtained. 
The local method automatically imparts flexibility to 
bonds and bond angles; this can be obtained in the 
global minimization only at the cost of greatly in- 
creasing the number of independent variables. 

In the global procedure, only so many variables can 
be allowed to change simultaneously since both cal- 

* The essential portion of the program is a module of less 
than 10.103 bytes in system 360, as coded by us. Also re- 
quired are nine four-byte words for each atom for tree-list 
matrix and two sets of coordinates. 

culation time and needed storage are strongly de- 
pendent on their number. As a result, the fitting of a 
large protein can be done only in pieces. If the cri- 
terion for fitting is the deviation from a set of target 
positions, then the conformation of each piece depends 
on the conformation of only the adjacent pieces and 
that not strongly. But in energy minimization each 
piece interacts through nonbonded interactions with 
other pieces which may be many residues distant along 
the chain. As a result, refinement with the global 
method has to be piecemeal and must be done in 
several cycles over the pieces. Necessary concerted 
changes in dihedral angles in chain segments close in 
space but far distant along the chain cannot be made, 
even though they are undoubtedly the quicker means 
to the desired objective and otherwise would give an 
advantage to the use of the global method. 

Therefore, energy minimization by the simpler local 
method may be preferable (Levitt, 1974). More ex- 
perience with an energy-refinement procedure by this 
method will be needed to decide if this is indeed so. 
This problem is presently being studied by us. 
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